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ABSTRACT 

This paper describes research into the applicability of anomaly detection 
algorithms using machine learning and time-magnitude thresholding to determine 
when an autonomous vehicle sensor network has been subjected to a cyber-attack 
or sensor error. While the research community has been active in autonomous 
vehicle vulnerability exploitation, there are often no well-established solutions to 
address these threats. In order to better address the lag, it is necessary to develop 
generalizable solutions which can be applied broadly across a variety of vehicle 
sensors. The current measured results achieved for time-magnitude thresholding 
during this research shows a promising aptitude for anomaly detection on direct 
sensor data in autonomous vehicle platforms. The results of this research can lead 
to a solution that fully addresses concerns of cyber-security and information 
assurance in autonomous vehicles. 
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1. INTRODUCTION 

Introduction of erroneous data into modern 
sensor fusion algorithms can occur through 
take-over vulnerabilities and lower tech 
issues such as damaged or obstructed sensors. 
These vulnerabilities include GPS spoofing, 
which can be used in off-road and wrong-way 
attacks with high success rates [1]. Damaged 
or obstructed sensors can also introduce 
anomalous sensor data leading to unintended 
results. Detection and mitigation of 
erroneous data in real-time on vehicle sensor 
networks may flag issues with sensors that 

would be difficult or impossible to detect 
from access to a single sensor output. 

While the research community has 
demonstrated take-over vulnerabilities with 
high-success rates, there is a gap in the 
availability of technologies to mitigate these 
threats. The purpose of this research was to 
evaluate the applicability of anomaly 
detection algorithms using machine learning 
and time-magnitude thresholding to 
determine when an autonomous vehicle 
sensor network has been subjected to a cyber-
attack or sensor error. Notably, this focuses 
on operating on data directly from the sensors 
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in front of any sensor fusion or other system. 
The research focuses on a single 
measurement, velocity, obtained from a 
variety of sensors commonly used in 
autonomous vehicles such as GPS, wheel 
speed, and LIDAR. However, these results 
are generalizable to other sensor networks of 
interest in ground vehicle research and 
development.  
 
2. BACKGROUND 

  Previously, researchers at SwRI 
demonstrated the ability to remotely exploit 
automated vehicle sensors such as GPS [2]. 
SwRI also exploited automated vehicle 
sensors by the manipulation of object 
classification algorithms [3]. Figure 1 shows 
examples of both exploits performed by 
SwRI. While the research community has 
been active in autonomous vehicle 
vulnerability exploitation, there are often no 
well-established solutions to address these 

threats. In order to better address the lag, it is 
necessary to develop generalizable solutions 
which can be applied broadly across a variety 
of vehicle sensors.  

In order to simplify the process of 
evaluating multiple algorithms, this study 
was limited to vehicle velocity 
measurements. Velocity has the benefit that it 
can be obtained from multiple sensors, 
including camera, GPS, wheel speed, and 
LIDAR. Additionally, the data is often of a 
high consistency. An array of anomalies was 
investigated including those related to cyber-
attacks and lower tech issues.  

Detection of anomalous data has been used 
with limited success by filtering out object 
location data from camera and LIDAR 
sensors. This may be accomplished by 
flagging data from composite location 
measurements which exceed a tolerance 
threshold [4].  

Figure 1. Examples of sensor manipulation include A) An offset applied mid-route forces an 
automated vehicle off the road, and B) an object classification algorithm classified as a truck as a 

bicycle 
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Combination approaches involving 
convolutional neural networks (CNNs) and 
Kalman filters have been studied which 
incorporate in-vehicle speed, GPS speed and 
in-vehicle acceleration data [5]. However, 
combination techniques like this are often 
limited to single sensor measurements per 
physical property and are therefore more 
suited for non-autonomous vehicles. 
Incorporation of techniques which leverage 
the same property being measured by 
multiple sensors is more suitable for 
autonomous vehicles and complex connected 
sensor networks.  

These anomaly detection algorithms, which 
feed on values being measured by multiple 

sensors embedded in a complex sensor 
network, can be used to flag issues that would 
be difficult to detect from access to a single 
sensor output. 

 
3. TECHNICAL APPROACH 

To fulfill the objective of the research, the 
technical approach was divided into five 
main tasks: data collection, velocity data 
extraction, anomaly insertion, detection, and 
testing and evaluation. Error! Reference 
source not found. below shows the function 
diagram of the approach described in this 
paper. 

 

 
3.1. Data Collection 

New and pre-recorded datasets from an 
autonomous vehicle platform were utilized. 
This vehicle system had raw sensor feeds 
recording one LIDAR sensor, a wheel 
encoder, and GPS. Camera data was also 
recorded, but ultimately not used due to the 
available resources for extracting useable 
velocity data. The data was recorded in the 
Robot Operation System (ROS) bag format 

 
and captured in several environments, 
including a private test track, public roads, 
and highways in differing amounts of traffic 
and speed to provide diversity in data. Data 
was also captured at residential intersections 
including traffic lights and stop signs.  

Collection of data focused on targeted 
vehicle velocities including 10 MPH, 25 

Figure 2. Functional Diagram 
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MPH, and 45 MPH, which are described as 
slow, medium, and fast, respectively.  

 
3.2. Data Processing and Feature 

Extraction 
For algorithm development, researchers 

collected a dataset of various sensors that 
generate velocity measurements as well as 
additional sensors which could be used to 
supplement the velocity data. Raw velocity 
from the GPS and wheel speed sensors were 
directly used. To generate a velocity 
measurement from the lidar, the Lightweight 
and Ground Optimized Lidar Odometry and 
Mapping (LeGO-LOAM) algorithm was 
used. During analysis, the extracted LIDAR 
velocity data was found to contain large 
amounts of noise particularly when the data 
set contained non-static objects such as other 
moving cars in the scene. These objects were 
difficult to filter solely using the LeGO-
LOAM algorithm. An internally developed 
tool that uses machine learning to remove 
cars and other non-static objects from the 
lidar point cloud was used to help filter data 
and remove noise. Additionally, data from 
the areas where the vehicles moved faster, 
such as highway, was found to be 
significantly noisier for the LIDAR, so our 
data collection was focused on residential 
areas that had fewer non-static objects and 
lower overall noise. 

Additional data from the cameras, Inertial 
Measurement Unit (IMU), throttle, brake, 
and steering wheel direction were also 
collected for potential future use. 

 
3.3. Anomaly Insertion 

There was a lack of data available publicly 
for the task of detecting anomalies in 
autonomous vehicle sensors. Thus, it was 
deemed necessary to define and implement 
an anomaly generator that could be used to 
both train and test the models created during 
this research. The researchers implemented a 
series of faults discussed in prior research 

such as drift and spike faults and common 
cyber security attacks such as replay attacks 
that would behave similar to what a malicious 
party would likely use in an attack [6]. 
Multiple types of faults/attacks were 
implemented, and each were applied to the 
collected data. The simulated faults and 
attacks are described in the following text. 

Drift fault is where a slight acceleration is 
applied to the sensor data, thereby causing a 
growing offset, or “drift”, that gradually 
builds up. Linear and exponential drifts were 
both used as inserted anomalies. An example 
is shown in Figure 2.  

 
Figure 2. An Example of a Drift Fault 

Spike faults add positive momentary pulses 
to the signal that imitate a sensor shorting. An 
example is shown in Figure 4. 

 

 
Figure 3. An Example of a Spike Fault 
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Hardover faults imitate whenever a sensor 
saturates and temporarily reports the 
maximum sensor reading. An example is 
shown in Figure 4. 

 
Figure 4. An Example of a Hardover Fault 

Erratic faults add a normally distributed 
noise profile to the overall signal. An 
example is shown in Figure 5. 

 

 
Figure 5. An Example of an Erratic Fault 

Stuck faults imitate a sensor getting jammed 
at a fixed value temporarily. An example is 
shown in Figure 6. 

 

 
Figure 6. An Example of a Stuck Fault 

Simulated attacks included replay and 
offset attacks. A replay attack is where 
communications are intercepted/recorded 

and fraudulently resent to misdirect the 
receiver. The replay attacks were 
implemented by replaying data recorded 
from separate data collections where various 
parameters such as location and traffic 
conditions differed from the test dataset. An 
offset attack is a replay attack where the 
intercepted data is simply delayed by some 
amount of time. Fully and partially blocked 
sensors were also simulated in the anomalous 
datasets. 
  
3.4. Detection 

Multiple algorithms were explored in this 
research for anomaly detection capabilities; 
time-magnitude based thresholding, 
Temporal Autoencoder (TAE), and Density-
Based Spatial Clustering of Applications 
with Noise (DBSCAN). 

The data had to be time aligned to be usable 
with the data driven anomaly detection 
approaches. All the different sensors used 
would come in at different times which, in its 
raw form, is difficult to use. To handle this, 
the data was resampled at 10 Hz and linear 
interpolation was used to approximate the 
sensor values at the resampled points. 10 Hz 
was chosen because that was the data rate of 
the slowest sensor, the GPS. This rate was 
also found to be a good trade-off between 
data fidelity and processing speed for the 
different detection algorithms. 

The first and simplest approach for a data 
driven multi-sensor anomaly detection 
algorithm was a time-magnitude based 
threshold algorithm. This algorithm works by 
taking a predefined window of time-aligned 
data and finding the absolute difference in 
velocity between two different sensors. The 
algorithm would then count the total number 
of data points where the difference in values 
exceed a pre-defined threshold. The 
algorithm counts the number of points that 
exceed the difference threshold and flags the 
data window as an anomaly if the total 
number exceed some anomaly count 
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threshold. These parameters for length of 
time window, difference threshold, and total 
points threshold are tunable and can be 
configured to create multiple detection 
algorithms tuned to detect different kinds of 
faults. 

The final time-magnitude detection 
algorithm utilized multiple layered 
thresholding algorithms in combination to 
create a robust anomaly detection algorithm. 
Each algorithm was tuned individually for 
different sets of anomalies. A high difference 
threshold and low anomaly count threshold 
was used to detect transient and erratic faults 
while a lower difference threshold with a 
larger anomaly count threshold was used to 
find lower frequency anomalies such as 
sensor drift. 

To determine the values for these 
thresholds, the data collected for this project 
was analyzed and the parameters tuned to 
minimize false positives or false negatives. 
The final time-magnitude detection 
algorithm comprised of three different time-
magnitude algorithms. 

Another approach that was briefly explored 
was determining if a Temporal Autoencoder 
(TAE) could learn and rebuild the nominal 
velocity signal when fed multiple velocity 
topics with anomalies present. This TAE 
follows the scheme shown in Figure 7. 

 
Figure 7. TCN-AE Architecture [7] 

The goal for this architecture was that by 
reconstructing a ‘nominal’ signal from 
multiple sensor readings, where one or more 
of the sensors may be hijacked, then a system 

could determine if a sensor is faulty or 
malicious by computing the difference 
between the nominal generated signal value 
and the various input topics. If a sensor 
reading is outside of the pre-determined 
threshold, it would then be flagged. 

The last machine learning focused 
algorithm explored was DBSCAN, which is 
a modern clustering algorithm useful for 
anomaly detection as it can be trained on data 
representing only normal sensor traffic [8]. 
DBSCAN groups together high-density areas 
in the data by assigning clusters to them. Data 
that exists outside of those clusters are 
considered anomalies. Figure 8 offers a 
visual explanation of DBSCAN.  

 

 
Figure 8. Visual Representation of DBSCAN [9] 

3.5. Testing and Evaluation 
  Testing was implemented by adding 
anomalies to a single data point at a time, 
grabbing a fixed time window of ten seconds 
of data and applying the algorithm to evaluate 
its ability to detect the anomaly. The 
algorithm was applied to one sensor at a time 
to evaluate its performance using datasets 
containing collected data from the target 
sensor. The algorithm was also tested with no 
anomalies on each sensor to represent the 
nominal operating conditions. This provides 
a baseline performance metric for the 
detection algorithm. 
  The following metrics were evaluated 
during testing for each sensor and fault type: 

 Accuracy – the measure of correct 
predictions over all predictions. 
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 Precision – the measure of correctly 
detected anomalies out of all anomaly 
detections. 

 Recall – the measure of correctly 
detected anomalies out of all 
predictions. 

 F1 – the harmonic mean, or average, 
of the precision and recall metrics.  

These metrics are calculated from the number 
of True Positives (TP), True Negatives (TN), 
False Positives (FP), and False Negatives 
(FN). These are defined in the context of this 
research as follows: 

 TP – An anomalous data point is 
correctly predicted to be an anomaly. 

 TN – A non-anomalous data point is 
correctly predicted to not be an 
anomaly. 

 FP – An anomalous data point is 
incorrectly predicted to not be an 
anomaly. 

 FN – A non-anomalous data point is 
incorrectly predicted to be an 
anomaly. 

The formulas for each of the metrics are 
listed below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
்ା்ே

்ା்ேାிାி
       (1)  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

்ାி
           (2)   

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்

்ାிே
              (3)  

 

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

All algorithms, data, and anomalies were 
implemented using the Python programming 
language. 

 
4. RESULTS 

Of the four approaches explored, the time-
magnitude approach yielded the best results. 
The thresholding approach was able to detect 
most of the simulated faults. It was also able 
to overcome deficiencies in the data set such 
as noise. The majority of the noise in the data 
resulted from the velocity extracted from the 
LIDAR which would sporadically change its 
value. While this can be fixed by having a 
more robust LIDAR velocity extraction 
algorithm, that effort is outside the scope of 
this research.  

The three-machine learning based anomaly 
detection approaches were more difficult to 
implement due to the noise in the data set. 
The current data set is  generally insufficient 
to adequately train the machine learning 
algorithms as the algorithms would learn 
poorly and not generalize the inputs well.  

Therefore, only the results pertaining to the 
time-magnitude threshold anomaly detection 
algorithm are shown in Table  and Table. 
These tables show the accuracy, precision, 
recall, and F1 measurements for each sensor 
and fault type tested. The measured results 
are split into two tables for readability. 
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The target thresholds for all four 

measurements were 95% or greater. GPS and 
wheel speed sensors achieved the target 
Accuracy thresholds for the majority of the 
different faults and attacks that were tested; 
furthermore, all three sensors achieved the 
Recall target thresholds on the majority of 
the faults and attacks tested. The time-
magnitude threshold anomaly detection 
algorithm worked best on the GPS sensor 
data and had generally good results in terms  

 
of accuracy and recall. Most results show at 
least 90% and only a few resulted in less than 
85%. 

The algorithm had poorer results in terms of 
precision which in turn lowered the F1 score. 
The algorithm particularly had issues when 
encountering erratic and stuck faults on all 
sensors. Out of all the sensors, LIDAR 
experienced the poorest performance. This 
was expected as the velocity data from the 
LIDAR contained noise despite the filters. 

Table 2. Time-Magnitude Thresholding Measured Recall and F1 Score Results 

LIDAR GPS Wheelspeed LIDAR GPS Wheelspeed
No Fault N/A N/A N/A N/A N/A N/A
Linear Drift 97.73% 68.63% 48.28% 91.49% 76.50% 62.22%
Exponential Drift 97.40% 95.56% 86.90% 89.29% 94.51% 86.90%
Spike 78.09% 85.92% 55.93% 80.80% 90.44% 59.10%
Hardover 99.67% 99.24% 98.71% 90.98% 94.06% 95.17%
Erratic 10.44% 8.55% 2.95% 16.77% 15.56% 5.61%
Stuck 33.69% 27.29% 22.12% 44.94% 41.31% 34.58%
Replay 95.00% 94.19% 97.70% 92.23% 93.10% 94.44%
Offset 95.29% 95.24% 95.83% 87.57% 89.69% 92.46%
Partial Block 85.51% 97.33% 97.26% 81.94% 94.10% 93.42%
Full Block 90.67% 100.00% 100.00% 86.62% 93.88% 94.81%
TOTAL 78.35% 77.20% 70.57% 76.26% 78.32% 71.87%

Fault/Attack
Recall F1

LIDAR GPS Wheelspeed LIDAR GPS Wheelspeed
No Fault 90.88% 100.00% 100.00% N/A N/A N/A
Linear Drift 94.22% 84.48% 81.59% 86.00% 86.42% 87.50%
Exponential Drift 93.75% 96.53% 92.36% 82.42% 93.48% 86.90%
Spike 87.32% 94.09% 93.02% 83.71% 95.48% 62.66%
Hardover 93.94% 95.78% 96.44% 83.68% 89.39% 91.87%
Erratic 66.67% 69.06% 65.75% 42.58% 86.15% 57.14%
Stuck 72.60% 74.58% 71.53% 67.48% 85.02% 79.14%
Replay 94.14% 95.60% 96.34% 89.62% 92.05% 91.40%
Offset 91.96% 91.96% 94.76% 81.00% 84.75% 89.32%
Partial Block 90.91% 96.85% 96.50% 78.67% 91.25% 89.87%
Full Block 91.80% 96.48% 96.88% 82.93% 88.46% 90.12%
TOTAL 88.02% 90.49% 89.56% 77.81% 89.25% 82.59%

Fault/Attack
Accuracy Precision

Table 1. Time-Magnitude Thresholding Measured Accuracy and Precision Results 
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Overall, the Precision and Recall scores show 
that false negatives and false positives were 
generally low with a high true positive 
detection rate. The results are generally close 
to reaching the target thresholds that were set 
prior to the research. 

Cleaner velocity data would vastly improve 
the results when detecting anomalies on the 
LIDAR data. This can be improved either 
through better filtering of problematic data 
points in the raw LIDAR sensor data, or 
through use of an alternative algorithm. 
Further improvements of the algorithm can 
be made through more advanced threshold 
adjustments or layering. In addition, a less 
noisy and more extensive data set will 
improve the useability of the machine 
learning algorithms. The machine learning 
algorithms combined with the time 
magnitude thresholding will likely provide a 
more complete, robust solution for detecting 
anomalies in an autonomous vehicle sensor 
network.  

 
5. FUTURE DEVELOPMENT 
  Future work on this research includes 
refinement of the time-magnitude 
thresholding anomaly detection algorithm 
and the data set, testing on an autonomous 
vehicle platform, fully implementing and 
evaluating the machine-learning based 
anomaly detection solutions and expanding 
the sensor and data types present in the 
anomaly detection system. Figure 9 shows 
the autonomous vehicle platform used during 
this research. 
  Refinement of the thresholding algorithm 
and data set can improve the anomaly 
detection metrics enough to reach the target 
95% threshold. This can also improve its 
response when encountering the most 
problematic anomalies, erratic and stuck 
faults. Moving this system from a pure 
Python implementation to an autonomous 
vehicle platform will provide better 

validation of the anomaly detection 
algorithms and showcase its capabilities. 
 

 
Figure 9. Autonomous Vehicle Platform 

 Full implementation of a machine learning 
anomaly detection algorithm alongside the 
thresholding algorithm can provide a more 
complete and robust solution that reaches all 
target thresholds and minimize any false 
positives which can be problematic for any 
anomaly detection solution. This can be 
accomplished by further improvement of the 
data set by additional data collection and 
noise reduction. Expansion of the data set to 
include other sensors such as camera and 
radar alongside other data types such as 
object tracking and localization, can further 
diversify the data for more comprehensive 
development of an autonomous vehicle 
sensor network anomaly detection solution. 

 
6. CONCLUSION 
  The current results achieved during this 
research shows a promising aptitude for 
anomaly detection on direct sensor data in 
autonomous vehicle platforms. The measured 
results do not quite reach the target 
thresholds, but with further improvements, 
this system can reach those thresholds and 
incorporate a larger variety of data and 
sensors. The results of this research can lead 
to a solution that addresses concerns of 
cyber-security and information assurance in 
autonomous vehicles. 
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